
MATHEMATICS OF COMPUTATION 
VOLUME 51, NUMBER 184 
OCTOBER 1988, PAGES 769-786 

On Four-Dimensional Terminal Quotient Singularities* 

By Shigefumi Mori, David R. Morrison, and Ian Morrison** 

Abstract. We report on an investigation of four-dimensional terminal cyclic quotient 
singularities which are not Gorenstein. (For simplicity, we focus on quotients by cyclic 
groups of prime order.) An enumeration, using a computer, of all such singularities for 
primes < 1600 led us to conjecture a structure theorem for these singularities (which 
is rather more complicated than the known structure theorem in dimension three). We 
discuss this conjecture and our evidence for it; we also discuss properties of the anti- 
canonical and antibicanonical linear systems of these singularities. 

Introduction. The recent successes in understanding the birational geometry 
of algebraic varieties of dimension greater than two have focused attention on a 
class of singularities (called terminal singularities) which appear on the birational 
models which the theory selects. In dimension three, the structure of these termi- 
nal singularities is known in some detail: The terminal quotient singularities were 
classified, in what is now called the "terminal lemma", by several groups of people 
working independently (cf. [1], [2], [5], [8]), and all other three-dimensional termi- 
nal singularities were subsequently classified by work of the first author [6] and of 
Kollar and Shepherd-Barron [4]. Both of these classifications were based on key 
results of Reid [10], [11] who reduced the problem to an analysis of quotients of 
smooth points and double points by cyclic group actions. (A detailed account of 
the classification can be found in [12].) 

A consequence of this classification, apparently first observed by Reid [12], is 
that for any three-dimensional terminal singularity T, the general element of the 
anticanonical linear system I - KT has only canonical singularities. This in turn 
implies that if we form the double cover of T branched on the general antibicanonical 
divisor D E I - 2KT I, that double cover will also have only canonical singularities. 
At first glance, this second property appears to have no advantages over the first, 
but looking at things in these terms proved decisive in a slightly more global context: 
Kawamata [3] showed that if T is an "extremal neighborhood" of a rational curve 
C on a threefold, then the existence of such a divisor D globally on T is sufficient 
to conclude the existence of a certain kind of birational modification (a "directed 
flip") centered on C. The first author [7] showed that such divisors always exist, 
completing the proof of the Minimal Model Theorem for threefolds. (See [7] for 
more details.) 
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All of this is by way of explaining why we chose to concentrate on properties of 
I-KT I and I-2KT I when we began to study terminal singularities in dimension four. 
The detailed structure of four-dimensional terminal singularities is still unknown; 
even for quotient singularities, the number-theoretic methods used in the various 
proofs of the terminal lemma appear to give no information in higher dimension. We 
restrict our attention here to non-Gorenstein four-dimensional quotient singularities 
which are quotients by groups of prime order. (The four-dimensional Gorenstein 
cases were completely classified some time ago by the second author and G. Stevens 
[8].) This class of singularities is a natural place to begin an investigation: Among 
other pleasant features, computations with cyclic quotient singularities can be made 
readily, by using the techniques of toric geometry. In particular, to decide whether 
a given quotient singularity is terminal requires only a finite computation (of a 
distinctly number-theoretic character). 

We easily found (by hand) examples for which the singularities of the general 
anticanonical divisor are worse than canonical. (An infinite number of examples is 
given in Example 2.5 below.) To find examples for which I- 2KT I is badly behaved 
was more difficult, and we turned to a machine computation. We did find such 
examples, but contrary to the expectations we formed after finding the first few, 
we have to date in a systematic search found exactly six examples with index less 
than 1600, and all of these have index between 83 and 109. Our examples and these 
computations are described in Section 2. 

In order for I - 2KTI to be well behaved, the terminal singularity T must pass 
one of two computational tests (corresponding to Corollary 2.8(ii) and Lemma 2.14 
below). The second test is computationally very expensive, so we resorted to it as 
seldom as possible. And we were surprised to observe that once the index passed 
420, exactly 20 singularities for each index required the use of this second test. We 
have arrived at an explanation for this phenomenon in the form of a conjectural 
"four-dimensional terminal lemma", which we discuss in Section 1. Among other 
things, this approach allows us to handle the 20 cases we encountered experimen- 
tally in a systematic fashion (cf. Table 2.11). But in addition, the truth of the 
conjecture would imply that our six examples of terminal quotient singularities of 
prime index for which I - 2KTI is badly behaved are the only ones. 

The results of this paper are related to our computer calculations in several ways. 
First, Theorem 1.3, which describes a large class of terminal quotient singularities, 
could not have been formulated without the results of our computations: We discov- 
ered most of these singularities by examining the output of our programs. Second, 
the proofs of Theorems 1.3 and 2.12 are computer-aided. The computer assistance 
is rather trivial in the case of Theorem 1.3 (the required calculation could be done 
on a programmable hand-held calculator), but the proof of Theorem 2.12 requires 
the solution of a large number of linear prograirning problems. And finally, the 
calculations we made inspired our conjectural classification of these singularities, 
and have provided evidence for that c onjecture. 

1. A Conjectural Classification. In this section we wish to propose a conljec- 
tural classification of those fouir-dirnersional terminal singularities which are (uo- 
tients by cyclic groups of I)rine or(ler. More precisely, we will write down a list of 
Z/pZ-qiuotient singullarities some of whose entries depe(nd OIl one or two i)aralneters 
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in (Z/pZ)*--and verify that all the singularities on our list are terminal. Our con- 
jecture is that these are exactly the isolated terminal Z/pZ-quotient singularities 
of index p if p > 421. 

First some notation. If m and k are integers, we write (m)p or simply (m) for 
the unique element of {0, 1, 2, ... , p - 1} which is congruent to m modulo p and 
m(k) for (mk). Fix once and for all a generator a of Z/pZ. If a acts on C4 by the 
recipe 

(W, XI y, Z) -* (faW bX fCy, fdz) with e =2e/P 

then we will denote the corresponding Z/pZ-quotient singularity by [a, b, c, d]p and 
call a, b, c, and d the weights of the singularity. The singularity is isolated exactly 
when each of the weights is relatively prime to p. 

Given a Z/pZ-quotient singularity [a, b, c, d]p, we let 

s= (a+b+c+d). 

When we wish to emphasize the value of s, we will sometimes write [sla, b, c, d]p for 
[a, b, c, d]p. More generally, we let 

Sk = a(k) + b(k) + c(k) + d(k). 

(Note that while Sk = 8(k) (modp), Sk need only lie between 0 and 4p.) Reid 
([10, Theorem 3.1]; cf. also [12, Theorem 4.6]) has given a criterion which charac- 
terizes terminal quotient singularities: The singularity [a, b, c, d]p is terminal if and 
only if 

(1.1) P < Sk for all k E {1,2, . .. ,p- 1}. 

A Z/pZ-quotient singularity can be alternatively described by means of a quin- 
tuple Q = (a, b, c, d, e) of integers such that a + b + c + d + e = 0 and p > MQ = 

max{lal, Ibl, cildl, Iel}. Such a quintuple gives rise to the singularity [a, b, c,d]p 
with s --e (mod p). In these terms, the condition that [a, b, c, d]p be terminal can 
be expressed as 

p + e(k) < a(k) + b(k) + C(k) + d(k) + e(k) 

for all k c {1, 2,...., p - 1}. Since the expression on the right is a multiple of p, this 
condition is equivalent to 

(1.2) 2p < a(k) +b(k) + c(k) +d(k) +e(k) 

for all k E {1, 2,. . . p- 1}. We say that the quintuple Q = (a, b, c, d, e) is p-terminal 
when p > MQ and condition (1.2) is satisfied. 

For computational purposes, a slight reformulation of conditions (1.1) and (1.2) 
is often convenient. We call a subset >J of {1, 2, .. ,p-l1} a CM-type, if J contains 
exactly one element from each of the pairs (k, p - k). If the singularity [a, b, c, d]p 
is isolated, then condition (1.1) is equivalent to 

P < Sk < 3p for all k in sofle CM-type J. 

(This follows from the fact that m(k) + rn(p-k) = p for any integer m relatively 
prime to p). Similarly, when acth of a, b, c, d, and e is nonzero (and p > MQ), 
condition (1.2) inay b)e replaced b)y 

2p ? al(k) + b(k) + (,(k) + (k) + e(k) ? 3p for all k e J. 
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Given a p-terminal quintuple Q = (a, b, c, d, e), since the "p-terminal" condition 
is symmetric, each of the five Z/pZ-quotient singularities [a, b, c, d]p, [a, b, c, e]p, 
[a, b, d, e]p, [a, c, d, e]p, and [b, c, d, e]p is terminal; we call these the associated p- 
singularities of Q. A quintuple Q = (a, b, c, d, e) is called stable if it is p-terminal 
for all sufficiently large p. We say that a terminal singularity [a, b, c, d]p is stable*** 
if it is associated with a stable quintuple Q = (a, b, c, d, e) with p > MQ; we call 
[a, b, c, d]p sporadic if it is not stable. 

Every terminal singularity has an index; in the case of a quotient singularity 
C4/G, the index is the smallest natural number n with the property that the group 
G acts trivially on (KC4)?n. For a Z/pZ-quotient singularity [a, b, c, d]p, the index 
is 1 if s = 0 (in this case, the singularity is Gorenstein), and the index is p if s is 
relatively prime to p. 

If the entries in a quintuple Q are all nonzero and p > MQ, then each associated 
p-singularity has index p. If one of the entries in Q is zero, then one of the associated 
p-singularities is isolated and Gorenstein, while the others are nonisolated. Now the 
classification of nonisolated terminal quotient singularities reduces to a problem in 
lower dimension, and is related (via the quintuples Q) to the classification of four- 
dimensional Gorenstein terminal quotient singularities. A complete classification in 
both of these cases is known [8]: Phrased in terms of quintuples, the classification 
says that each quintuple corresponding to Gorenstein and to nonisolated terminal 
quotient singularities must be equivalent mod p to one of the form (a, -Aa, /3, -3,0). 

For the remainder of this paper, we restrict our attention to isolated singularities 
of prime index. We will implicitly assume that each quotient singularity we consider 
is isolated, and that the order of the quotient group coincides with the index, thus, 
the phrase "terminal quotient singularity of index p" serves as an abbreviation for 
"isolated terminal Z/pZ-quotient singularity of index p". 

An extensive computer study of terminal quotient singularities of prime index 
led us to the discovery of some large classes of stable quintuples. 

THEOREM 1 .3. Let Q be a quintuple of integers summing to zero, and let p be 
a prime number. Suppose that either 

(a) Q = (cr, -cr, f, -, -fl - -i) with 0 < IceI, IdI, 1-T < p/2, and f + :A 0, or 
(b) Q = (cl, -2ce, A, -20, ce + 0) with 0 < Icel, 101 < p/2, and ar +: 7 On or 
(c) Q is one of the 29 quintuples listed in Table 1.9 and p > MQ. 

Then Q is p-terminal. 

It follows immediately that each of the quintuples described in the theorem is 
stable, and that each of their associated p-singularities is terminal and stable (when 
p satisfies the given restrictions). We call the 29 quintuples of case (c) exceptional 
stable quintuples because they do not fit into infinite families like those of cases 
(a) and (b). These two infinite families are in fact characterized by certain linear 
relations among a, b, c, d, and e which will be important in Section 2. (Specifically, 
we have a + b = c + d + e = 0 in case (a) and 2a + b = 2c + d = a + c - e = 0 in 
case (b).) 

Before proving this theorem, we wish to state the conjecture about terminal 
quotient singularities suggested by our computer calculations. To do so, we first 

***This is unrelated to the notions of stability arising in geometric invariant theory. 
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note that the group (Z/pZ)* acts on the set of Z/pZ-quotient singularities by 

[sla, b, c, d]p -- |[sk lak) lb I C(k) id~k 

and the symmetric group S4 acts by permuting the weights. Both these actions 
preserve the subset of isolated terminal singularities of index p. 

CONJECTURE 1.4 (four-dimensional terminal lemma). Fix p > 421. Up to 
the actions of (Z/pZ)* and S4, each isolated four-dimensional terminal Z/pZ- 
quotient singularity of index p is associated with one of the p-terminal quintuples 
given in Theorem 1.3. 

Note that the descriptions of our infinite families (cases (a) and (b) in Theorem 
1.3) are somewhat redundant when we consider the actions by (Z/pZ)* and S4: 
By a further action of (Z/pZ)*, for example, we could have assumed that a = 1. 
However, it will be more convenient to work with the larger families of quintuples 
as we have described them. 

Our conjecture says in part that every terminal quotient singularity of index p 
is stable when p > 421. However, for most p < 421, there definitely exist sporadic 
terminal quotient singularities of index p; these will be discussed further at the end 
of this section. Some of the sporadic terminal singularities will play an important 
role in Section 2, where we will also give some explicit examples. 

We now turn to the proof of Theorem 1.3; the proof is a case analysis. Observe 
that P > MQ in each case, so that we only need to verify condition (1.2). 

Case (a). This is the case analogous to the one occurring in dimension 3, where 
the terminal lemma asserts that two of the weights of any terminal quotient singular- 
ity must sum to the index p (or equivalently, that any p-terminal quadruple is equiv- 
alent mod p to one of the form (a, -a, j, -j3)). In our case, since a((k) + (-a) (k) = p 

and j3(k) + y(k) + (/ - 7y)(k) = p or 2p for all k E {1, 2, ... ,p-1}, the p-terminal 
condition (1.2) is immediate. 

The remaining cases have no analogues in dimension less than 4. 
Case (b). If we act on the quintuple (a, -2a, /, -2/i, a + j) by an element of 

(Z/pZ) * then, possibly after modifying some of the entries of the resulting quintuple 
by multiples of p, we get another quintuple of the same form. Thus, it suffices to 
show that 

2p< (a) +(-2a)+ (fl) +(-2f3) +(a+f3). 

Write (-2a) = (j + l)p - 2(a), (-2pi) = (j + l)p - 2(/3), and (a + /) = (k - 1)p + 
(a) + (/), so that 0 < i, j, k < 2. Then 

(a) + (-2a) + (f) + (-23) + (a +f3) = (i+ j + k + 1)p. 

But if i = j k = 0, then (a) < p/2, (ii) < p/2, and (a) + (/3) > p, a contradiction. 
Thus, i + j + k + 1 > 2, verifying the condition. 

Case (c). Stable Quintuples. Let Q = (a, b, c, d, e) be a quintuple of integers 
summing to zero, let lQ be the least common multiple of {IaI, Ibi, Ic, Idl, IeI} and MQ 
be the maximum of this last set. To state our main result about stable quintuples, 
we need a definition. Let 

RQ(X) = lim ([ay] + [by] + [cy] + [dy] + [ey]), 

with [z] denoting the greatest integer less than or equal to z. 
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PROPOSITION 1.5. The following are equivalent: 
(a) Q = (a, b, c, d, e) is stable; 
(b)-3 < RQ (i/lQ) <-2, for i = 1, 2,. .., IQ-1. 

Proof. For each integer m dividing lQ, the function y -4 [my] is constant on the 
open intervals (i/lQ, i + 1/lQ). Thus, the function 

x L- urn [my] 

is constant on the half-open intervals [i/lQ, i + 1/lQ). (The limit is needed when m 
is negative.) In particular, the function RQ is constant on such intervals, so that 

(1.6) RQ(X) = RQ([xlQ]/IQ). 

Therefore, the proposition will follow if we show 
Claim 1.7. If p > MQ and 0 < k < p, then a(k) + b(k) + c(k) + d(k) + e(k) = 

-RQ (k/p)p. 
To see the claim, note that m(k) /p + [mk/p] = mk/p for any nonzero integer m; 

moreover, since p > MQ, mk/p is never of the form i/lQ. Thus, 

RQ(k/p) + (a(k) + b(k) + c(k) + d(k) + e(k))/p 

= [akip] + [bk/p] + [ck/p] + [dk/p] + [ek/p] 
+ (a(k) + b(k) + C(k) + d(k) + e(k))/p 

= ak/p + bk/p + ck/p + dk/p + ek/p 

=0. 

This proves the claim, and hence the proposition. 0 
Claim (1.7) has a nice 

COROLLARY 1.8. If Q is p-terminal for any prime p > lQ, then Q is stable. 
Moreover, in this case Q is p-terminal for every p > MQ. 

Proof. The terminal condition for a given prime p implies, by the claim, that 
all RQ(k/p)'s equal -2 or -3. But if p > IQ, then as k runs from 1 to p - 1, 
i = [klQ/p] runs through the entire set {O, 1, 2,.. , Q - 1}. In view of (1.6), this 
yields condition (b) of the proposition. But now Q is stable, and the claim implies 
that Q is p-terminal for every p > MQ. [ 

Proposition 1.5 provides a simple computational method for testingt whether 
a given quintuple Q is stable. Using it, the reader can easily repeat (or have 
his computer repeat) our verification that each of the quintuples listed in Table 
1.9 below is in fact stable. This then implies by Corollary 1.8 that each of these 
quintuples is p-terminal for every p > MQ. We have thus completed the proof of 
Theorem 1.3. 

Table 1.9 lists the 29 exceptional stable quintuples. The entries in the second 
column of the table are coefficients of certain linear relations among a, b, c, d, and 
e which we will need in Section 2. (For example, in the first line of the table, the 

tThis test is easily implemented on programmable calculators and computers of almost any 
size; a Pascal program which we wrote for this purpose is available from the third author upon0 
request. 
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entries 02100, 11002, and 20122 indicate that the quintuple satisfies the relations 
2b + c = 0, a + b + 2e = 0, and 2a + c + 2d + 2e = 0, respectively.) 

TABLE 1.9 

Stable Quintuple Linear Relations 

(9,1, -2, -3, -5) 02100,11002,20122 

(9,2, -1, -4, -6) 01200,02010,20212 

(12,3, -4, -5, -6) 02001,10002,12220 

(12,2, -3, -4, -7) 02010,11002,20212 

(9,4, -2, -3, -8) 01200,02001,20221 

(12,1, -2, -3, -8) 02100,12021,20122 

(12,3, -1, -6, -8) 02010,10020,12202 

(15,4, -5, -6, -8) 02001,20221 

(12,2, -1, -4, -9) 01200,02010,20212 

(10,6, -2, -5, -9) 02120,10020,12202 

(15,1, -2, -5, -9) 02100,20122 

(12,5, -3, -4, -10) 02001,02210,20221 

(15,2, -3, -4, -10) 02010,20212 

(6,4,3, -1, -12) 02221,20001 

(7,5,3, -1, -14) 02221,20001 

(9,7,1, -3, -14) 02001,20221 

(15,7, -3, -5, --14) 02001,20221 

(8,5,3, -1, -15) 02211,20011 

(10,6,1, -2, -15) 00210,22012 

(12,5,2, -4, -15) 00210,22012 

(9,6,4, -1, -18) 02221,20001 

(9,6,5, -2, -18) 02221,20001 

(12,9,1, -4, -18) 02001,20221 

(10, 7,4, -1, -20) 02221,20001 

(10,8,3, -1, -20) 02221,20001 

(10,9,4, -3, -20) 02221,20001 

(12,10,1, -3, -20) 02001,20221 

(12,8,5, -1, -24) 02221,20001 

(15,10,6, -1, -30) 02221,20001 

We conclude this section with a few comments on Conjecture 1.4 and our ev- 
idence for it. The existence of sporadic singularites shows that it is possible for 
a quintuple Q to be p-terminal for some p > MQ, and yet not be stable. To say 
that Q is not stable means, by Proposition 1.5, that IQ := {i < lQIRQ(i/lQ) < -3 
or RQ(i/lQ) > -2} is nonempty. On the other hand, by Claim 1.7, Q can be 
p-terminal only if for all k < p, RQ(k/p) is either -2 or -3. In other words, the set 

Jpl := {[kl/p]lk < p} must be disjoint from IQ. We say that p detects an unstable 
quintuple Q if 

Corollary 1.8 shows that any p > IQ detects an unstable Q. This result is somewhat 
unsatisfactory since if we act on Q by an element of (Z/pZ)* we will certainly change 
its least common multiple I without affecting its p-terminality. 
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Question 1.10. Is there a bound NQ defined in terms of MQ, so that every 
p > NQ detects an unstable Q? 

This question has a positive answer if Conjecture 1.4 is true. 

PROPOSITION 1 . 11. Let Q = (a,,..., a5) be a quintuple of integers, let p > 
6MQ and suppose that for some k E (Z/pZ)* and some quintuple Q' = (a.... ., a5) 

listed in Theorem 1.3 we have Q _ kQ' modp. Then: 
(i) If Q' satisfies the conditions in cases (a) or (b) of Theorem 1.3, then so does 

Q. 
(ii) If Q' is one of the 29 exceptional stable quintuples of Table 1.9, then Q is an 

integral multiple of Q'. 

It follows that if Conjecture 1.4 is true, then every stable quintuple is an integral 
multiple of one of the ones listed in Theorem 1.3, and every p > 6MQ detects an 
unstable quintuple. 

Proof Regarding Q' as an element of the vector space Q5, consider the annihi- 
lator Ann(Q') C (Q5)*. If v = (aol,.. . , a') is in this annihilator and satisfies 

(1.12) a/ Z for all i, and at I <6, 

then we claim that v E Ann(Q). For 

Iv QI < EZolaaI < E ZIoI'MQ < 6MQ, 

while v Q = kv - Q' = Omodp. Since p > 6MQ, v Q = 0. 
If Q' comes from case (a) of Theorem 1.3, then Ann(Q') contains {(1, 1, 0, 00 O), 

(0,0 . 1, 1, 1)}. Thus, these same vectors lie in Ann(Q); but since p > 2MQ, Q itself 
then satisfies the conditions of (1.3)(a). 

A similar argument, using the set {(2,1,0,00), (00,2,1,0),(1,01,0,-1)}, 
gives the result when Q' comes from case (b). 

If Q' is one of the 29 exceptional stable quintuples of Table 1.9, it suffices to 
show that Ann(Q) = Ann(Q'), for then Q will be an integral multiple of Q'. For 
this purpose, we only need to show that Ann(Q') has a basis consisting of vectors 
satisfying (1.12). Suppose a' and a' are two entries in Q' such that a' divides a', 
and mi, := a'/a' has absolute value between 2 and 5. Then Ann(Q') contains a 
vector whose nonzero entries are -1 and m,3, and since -1I + Inm, I < 6, this vector 
satisfies (1.12). Now if there are three pairs of entries of Q' with this property, which 
collectively involve at least four of the entries of Q', then the three corresponding 
vectors in Ann(Q') together with the vector (1, 1,1,1,1) form a basis of Ann(Q') 
with the required property. As is easily verified, there do exist three such pairs for 
27 of the 29 exceptional stable quintuples; in the remaining cases, we simply write 
down an appropriate basis for Ann(Q'). Namely, when Q' = (15,4,-5,-6,-8) 
we take as a basis {(0,2,0,0,1), (1,0,3,0,0), (0,3,0,2,0), (1,1,1,1,1)} while when 
Q= (10,8,3, -i, -20) we take as a basis {(2, 0,0,0,1), (0,0,1,3,0), (0,1, -2,2,0), 

We may define a stable (n + 1)-tuple Q 1)y analogy as am (n + 1)-tuple of inte- 
gers summing to 0, all n + 1 of whose associated n-dimnensional (Z/pZ)-quotienit 
singularities are terminal for all large primes p. Letting MQ 1)e the maximum of 
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the absolute values of the weights of Q, IQ be their least common multiple and 

RQ (X) = limn E [ay]X 
+X 

a straightforward modification of the arguments above then shows that when all 
entries of Q are nonzero, Q is a stable (n + 1)-tuple if and only if -(n - 1) < 
RQ(i/lQ) < -2 for i = 1,2, ... , Q - 1. Moreover, any time a proper subset of 
the weights of Q sums to 0, these inequalities automatically hold. Hence, isolated 
terminal quotient singularities of index p in any dimension for which a subset of 
the weights sums to zero mod p are stable. When n = 3, the terminal lemma 
asserts that all three-dimensional terminal quotient singularities are associated with 
such quadruples and hence that every prime larger than MQ detects an unstable 
quadruple. (In particular, the answer to the analogue of Question 1.10 is positive.) 
Conversely, the italicized assertion would imply the terminal lemma. 

It is easy to see that any stable quadruple has the form Q = (a, -al0, -/0). For 
the condition for a quadruple to be stable is simply that RQ be identically -2. But 
if a is a weight of largest absolute value, then for x = 1/a the values RQ (x -E) 

and RQ (x + E) will differ unless there is also a weight a' = a. Hence, the terminal 
lemma may also be restated as: "For all p, any three-dimensional terminal quotient 
singularity of index p is stable". Since Conjecture 1.4 would have as a consequence 
the statement: "For all p > 421, any four-dimensional terminal quotient singularity 
of index p is stable", it is tempting to ask 

Question 1.13. Does there exist, for each n, a lower bound po(n) such that every 
n-dimensional terminal quotient singularity of index p > po(n) is stable? 

We have, however, no evidence that the answer is yes, except in dimension < 4. 
Let us conclude with a few remarks on our evidence for Conjecture 1.4. In view 

of Theorem 1.3 and Proposition 1.11, the force of the conjecture is to assert that 

(i) there are no sporadic terminal quotient singularities of prime index p > 421, 
and 

(ii) there are no stable quintuples other than integral multiples of those listed in 
(1.3). 

Our evidence for both these assertions is computational. In the course of an 
investigation, discussed in Section 2, as to which terminal quotient singularities have 
good antibicanonical covers, we systematically tabulated all the terminal quotient 
singularities of prime index at most 1600. All the singularities found are either 
associated with one of the stable quintuples of Theorem 1.3, or are sporadic with 
index p < 421. A summary of our tabulation of the sporadic singularities appears in 
Table 1.14, where for each prime p < 421 we give the number Sp of sporadic terminal 
quotient singularities of index p up to the actions of (Z/pZ)* and S4. (Note that the 
correspondence between p-terminal quintuples and sporadic terminal singularities 
is more complicated than one might initially suspect; for example, when p = 61, 
the five associated p-singularities of the p-terminal quintuple (1, -3, 9, -27, 20) are 
all equivalent under the actions of (Z/61Z)* and S4.) 

Could there possibly be more sporadic terminal singularities? As can be seen by 
inspecting the table, the nruniber of sporadic terminal quotient singularities grows 
to a maximum of 300 when p = 83, arid then tapers off to zero. Moreover, for 
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421 < p < 1600, the only terminal quotient singularities found are those predicted 
by Conjecture 1.4. 

Could there possibly be more stable quintuples? By Corollary 1.8 and Propo- 
sition 1.11, if Q is a stable quintuple which is not an integral multiple of one of 
those in (1.3), and if p > max{lQ, 6MQ}, then the associated p-singularities of Q 
are terminal but are not associated with any quintuple on our list (1.3). Thus, our 
computations imply that any new stable quintuple must have IQ at least 1600 or 
MQ at least 267. On the other hand, the largest value of IQ for the 29 quintuples 
Q in Table 1.9 is 210 for Q = (7,5,3,-1,-14) and Q = (15,7,-3,-5,-14), and 
the largest value of MQ is 30. 

Our faith in the conjecture reflects our belief that these phenomena represent a 
general pattern for large primes. We find it hard to imagine that new sporadic sin- 
gularities or stable quintuples will appear after such a long period of predictability. 

TABLE 1.14 

p Sp p Sp p Sp p Sp 

2 0 73 220 179 105 283 10 

3 0 79 275 181 65 293 25 

5 0 83 300 191 40 307 0 

7 0 89 275 193 60 311 5 

11 0 97 230 197 65 313 5 

13 0 101 201 199 55 317 5 

17 9 103 255 211 20 331 5 

19 13 107 270 223 35 337 0 

23 28 109 220 227 45 347 5 

29 39 113 200 229 30 349 10 

31 30 127 120 233 45 353 5 

37 50 131 145 239 15 359 0 

41 76 137 140 241 30 367 0 

43 110 139 185 251 25 373 0 

47 100 149 130 257 15 379 0 

53 195 151 95 263 35 383 0 

59 260 157 55 269 10 389 0 

61 186 163 85 271 20 397 5 

67 205 167 90 277 0 409 0 

71 250 173 75 281 0 419 5 

2. Anticanonical Divisors and Antibicanonical Covers. In this section we 
indicate how the techniques of toric geometry can be used to decide whether a given 
terminal quotient singularity has either of the two important properties described 
in the introduction: whether its general anticanonical divisor has only canonical 
singularities, and whether the double cover branched on the general antibicanonical 
divisor of the quotient singularity has only canonical singularities. We will not 
completely settle the question for anticanonical divisors, contenting ourselves with 
giving an infinite number of examples for each alternative (see Examples 2.4 and 
2.5). We will be more concerned with whether each terminal quotient singularity 
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has a double cover branched on an antibicanonical divisor with only canonical 
singularities. (We call this a good antibicanonical cover.) Our principal results are 
that all the terminal quotient singularities associated with the stable quintuples of 
Theorem 1.3 do have such covers (cf. Proposition 2.10) and that up to the actions 
of S4 and (Z/pZ)*, there exist exactly six sporadic terminal quotient singularities 
of prime index less than 1600 which do not possess such covers (cf. Theorem 2.12 
and Table 2.15). These singularities all have indices between 83 and 109, and 
we conjecture that they are the only such singularities: This would follow from 
Conjecture 1.4. 

We begin by reviewing the notion of a hyperquotient singularity. Let yo, y an 
denote coordinates on Cn+1, let a generator a of Z/rZ act on Cn+1 by (Yo,... , Yn) 

_ (ao yo I... X fan Yn), where ' - e2ri/r, and let f E C [Yo, * , yn] be a Z/rZ-semi- 
invariant polynomial. Then the singularity of (f = 0)/(Z/rZ) at the origin is called 
a hyperquotient singularity. Let M Zn+l be the lattice of (rational) monomials 
on Cn+l, let ym denote the monomial corresponding to m E M, let N be the dual 
lattice, let N be the overlattice of N defined by N = N + Z * (ao/r,. . . ,an/r), 

and let M C M be the dual sublattice. Let N+ be the intersection of N with the 
nonnegative quadrant in NR := N 0 R. 

For m E M, say that the monomial ym appears in f (written ym E f) if its 
coefficient in f is nonzero. Then for any a E N, we define 

ce(f) = min{a(ym)Iym E f}. 

The methods of toric geometry lead one to: 

THE HYPERQUOTIENT CRITERION 2.1 ([6, Theorem 2 and Corollary 2.1]; 
[12, Theorem 4.6]). If the hyperquotient singularity (f = 0)/(Z/rZ) is canon- 
ical, then a (yo yn) > ax(f) + 1 for every primitive (nonzero) vector al e N+. 
Conversely, if Ca(yo . yn) > ad(f) + 1 for every primitive nonzero a E N+ and if 
the coefficients of the monomials appearing in f are sufficiently general, then the 
hyperquotient singularity (f = 0)/(Z/rZ) is canonical. n 

If we define the Newton polyhedron of f to be the lattice polyhedron in MR 

defined by 

Newton(f) = {u E MRoa(u) > a(f) for every a E N+J, 

then the hyperquotient criterion (2.1) depends only on the polyhedron Newton(f) 
and not on f itself. The exact translation of (2.1) to a condition on the Newton 
polyhedron is a bit complicated (see Reid [12, appendix to Section 4] for details), but 
(2.1) certainly implies that the vector (1,1,.. . 1) lies in the interior of Newton(f). 

We will apply the hyperquotient criterion to four-dimensional quotient singular- 
ities in two ways. Let X PZ4 denote the set of (rational) monomials in w, x, y, z; 
we will represent a monomial m E X either by a quadruple m = (M1, iM2, iM3, iM4) 

or by the symbol xm := wm 1xm2 ym3Zm4. X/ has a natural partial ordering defined 
by m' < m if and only if m' < m, for each i = 1, 2, 3, 4. Let XV denote the dual 
lattice of X, and let IV+ be its intersection with the positive quadrant. Given 
a terminal quotient singularity T = [sla,b,c,d]p, we define the weight function 

WT: Z Z/pZ by 

wT(m) = (am, + bM2 + cm3 + dm4)p 
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and let Ink = Ik (T) denote the fiber of this map over the residue k; we let + and 
.Z+ denote the subsets of X' and d4k, respectively, which consist of holomorphic k 
monomials. 4,/ is a basis of the fkeigenspace of the action of our generator 
a E Z/pZ on the polynomial ring C[w,x,y,z], and this eigenspace is naturally a 
module over the ring RT of invariants of the action. As such, Ik contains a unique 
minimal RT-module basis 2k = 2k (T) characterized by 

(2f2) ok = {m E Z+l if m'E k+ and m'< m then m'= m}. 

An easy residue calculation shows that each element of the linear system I-rKT | 

is represented by a polynomial f with eigenvalue frs. Thus, if we define a(2k) = 

min{a(m) Im E 2k} = min{a(m) Im c ok+} for a E Y+, and 

Newton(I - rKT) = {u M MRIa(U) > a(Yrs) for every a C IV+}, 

then Newton(f) C Newton(I - rKTI), with equality whenever each monomial in 

rs appears in f. 
We define some special elements ak of Hom(,A, Q) as follows: 

Cek (m) = m1{ak/p} + m2{bk/p} + m3{ck/p} + m4{dk/p}, 

where {x} := x - [x] denotes the fractional part. 

PROPOSITION 2.3. The general anticanonical divisor of 7' has a canonical sin- 
gularity if and only if 

(a) 1 := (1,1,1,1) is in the interior of Newton(j - KTI), and 

(b) for each k c (Z/pZ)*, there is some monomial m C G/k+ such that ak(wxyz) 

?ak(Xm) +1. 

Proof. We apply the hyperquotient criterion with (Yo, .y. , yn) = (w, x, y, z) and 

(ao, . . ., a.) = (a, b, c, d); the semigroup N+ is then generated by X'+ and {ak}. 

Thus, if f = 0 defines an anticanonical divisor with canonical singularities, for 
each k there is some m e A such that xm E f and Cek(wxyz) > ak(xm) + 1. 
Moreover, for each ac C V+ there is some xm C f with a(l) = a(wxyz) > 
ca(xm). In particular, 1 is in the interior of Newton(f), and hence in the interior 
of Newton(I - KTI). 

Conversely, if Newton(I - KT I) and dS+ satisfy the conditions in the proposition, 
let f be a general linear combination of the monomials in 2S; we must show that 
a(wxyz) > a(f) + 1 for any nonzero primitive a E N+. Any nonzero a E N+ 
can be written as ce = a' + al", where ae' E X+ and ac" E { 0, ak}, such that 
at least one of a' and a" is nonzero; we then have a(f) > ce'(f) + ce"(f). If 
a"ll 0 0, then ac'(wzyz) > a'(f) and a"(wxyz) > a"(f) + 1, and the assertion 
follows in this case. On the other hand, if a" = 0, then since 1 is in the interior of 
Newton(j - KTI) = Newton(f), we see that a(wxyz) = a'(wxyz) > a'(f) = a(f). 
Since both sides of this inequality are integers, we conclude that a(wxyz) > a(f) +1 
in this case as well. El 

Example 2.4. The terminal singularities associated to the stable quintuples in 
case (a) of Theorem 1.3 satisfy the conditions of the proposition. For in that case, 
after reordering the variables either yz or z is in the set 4+. For either of these 
monomnials, cak has the stated property; moreover, if either is in the set +. then 
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1 is in the interior of Newton(I - KT ) (cf. the proofs of Corollaries 2.7 and 2.8(i) 
below). 

Example 2.5. Many of the terminal singularities associated with the stable quin- 
tuples in case (b) of Theorem 1.3 do not have an anticanonical divisor with only 
canonical singularities. For example, if we take the quintuple (-1, 2, a, -2p, 3 - 1) 
with / > 3 and its associated p-singularity [2, 1,-2/, / - 1]p, and if we suppose 
that p > 2p + 2, then ol (wxyz) = 1 + (l/p). By the proposition, if there were 
such an anticanonical divisor, there would be some monomial m E l,+ such that 

a, (xm) = i/p. But since each of the numbers {2/p}, {f3/p}, {-23/p} = 1 - (23/p) 
and {3( - l)/p} is > 2/p, no nonnegative integral linear combination of them can 
equal i/p. 

We now consider antibicanonical covers of T. That is, we select a divisor D 
from the linear system I- 2KTJ and form the double cover of T branched on D. 
If D is defined by an equation f = 0, then we can describe that double cover as 
follows: We introduce a new variable v and let (Yo,. . ., Y4) = (V, W Xx y, z) and 

(ao,..., a4 ) = (s, a, b, c, d) determine an action of Z/pZ on C5 as in the discus- 
sion of the hyperquotient criterion. The double cover is then the quotient of the 
hypersurface v2 = f (w, x, y, z) by the given Z/pZ-action. 

PROPOSITION 2.6. Let T be a terminal quotient singularity. The general an- 
tibicanonical cover of T has a canonical singularity if and only if 2 := (2, 2, 2, 2) is 
in the interior of Newton(I - 2KT|). 

Proof. We again apply the hyperquotient criterion: In this case, the semigroup 
N+ is generated by Y+ (the elements of which have value zero on the new vari- 
able v = yo) together with the elements Ak and - defined by /k(mo,... ,m) = 

E mi {a, k/p} and -y(mo, .. . , m4) = MO . 
Suppose that the hyperquotient singularity (v2 _ f = 0)/(Z/pZ) is canonical. 

For any a E a+, let 8 = a- [-a(f)/2]-y E N+; then 6(V2 - f) = a~f), while 
6(vwxyz) = (wxyz) - [-(f)/2]. Thus, since 6(vwxyz) > 6(V2 - f) + 1, we see 

that aI(2) = 2a0(wxyz) > 2a(f) + 2[-a(f)/2] + 2 > a(f) + 1. In particular, 2 is in 
the interior of Newton(f), and hence in the interior of Newton(I - 2KTI). 

Conversely, if 2 is in the interior of Newton(I - 2KT ), we let f be a general 
linear combination of the monomials in S2,. Write any nonzero element of N+ in 
the form ce = al/ + al/ + al"/, where &l/ E Y+, al/ E {0, Alk} and a"' = nr, such that 
at least one of a", a//, and al" is nonzero. We make the following claims, which 
clearly suffice to show that ao(vwxyz) > ao(v2 - f) +1 (and thus complete the proof 
of the proposition): 

(i) Ak(VwxYz) > /h(V2 - f) + 1; 
(ii) If al 0& 0, then (a' + nty)(vwxyz) > (a' + nty)(v2 - f) + 1; 

(iii) If n > 1, then ny(vwxyz) > ny(v2 - f) + 1. 
To prove claim (i), since T is terminal, k > x(k) Sp Moreover, V2 appears 

in v2- f we have fk(v2 - f) < /3k(V2) = 2S(k)/p. Thus 

Bk(VWXYZ) = (Sk + S(k))/p > (2ts(k)/p) +1 > Ak(V - f) +1, 

proving (i). To prove claim (ii), since all terms in the inequality are integers, it 
suffices to show that ((i' + ny)(vwxyz) > (ad + ny)(v2 - f) + 1/2. Now 2 is 
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in the interior of Newton(I - 2KTI) = Newton(f), so that for a!' : 0 we have 
2a'(wxyz) > a'(f) + 1 (since all are integers). Thus, 

(a' + n-y)(vwxyz) = a'(wxyz) + n > (o'(f) + 1)/2 + n 

> min(a'(f), 2n) + 1/2 = (a' + n-y)(v2 - f) + 1/2. 

Finally, to prove (iii), note that -y(v2 _ f) = 0 so that n-y(vwxyz) = n > 1 = 

-y(v2- _f)+1. a 
Note that 2 E .2, and hence that 2 always lies in Newton(I - 2KTI). The 

content of the proposition is that a good antibicanonical cover can exist only if 2 
does not lie on the boundary of Newton(I - 2KT I). Let 59k denote the convex hull 
of Sk in R4, and let us call a vector n in R4 small if each coordinate is between 0 
and 2 and n is neither the zero vector nor the vector 2. 

COROLLARY 2.7. The singularity T has a good antibicanonical cover if and 
only if there is a small vector n in Sf28. 

Proof. If 2 is in the interior of Newton(j - 2KTj), then n = (1 - e)2 E Y2, 

for an appropriate positive E < 1. Conversely, given n = (i, j, k, 1) E S2s, we may 
suppose without loss of generality that i < 2. Define i' E Z by the conditions 
o < i' < p and i'a -2s (modp). Then n' = (i',O,O,O) E S2s, and, for small 
positive e, n" = (1- E)n + en' is in Y2, and has all coordinates strictly less than 
2. Therefore, 2 is in the interior of Newton(j - 2KTI). 0 

Hence, we have 

COROLLARY 2.8. (i) If X0+ contains a small vector, then T has a good antibi- 
canonical cover. 

(ii) If T is associated with a quintuple Q, and if there is a linear relation among 
the entries of Q with coefficients in {0, 1, 2} such that the coefficient of the entry 
of Q which is not a weight of T is 0, then T has a good antibicanonical cover. 

(iii) The infinite families of terminal quotient singularities associated with the 
stable quintupled of cases (a) and (b) of Theorem 1.3 have good antibicanonical 
covers. 

Proof. (i) Suppose that n E <Z+ is a small invariant monomial, and choose n to 
be maximal among small invariant monomials under the natural partial order on 
Xf. Then, since 2 E e2, n' := 2 - n is a small vector in Y2, 

(ii) By symmetry, we may assume that T = [a, b, c, d]p and Q = (a, b, c, d, e). If 
the linear relation is given by ia + jb + kc + Id + Oe = 0, then n = (i, j, k, I) is a 
small invariant monomial for T. 

(iii) The required linear relations are a + b = c + d + e = 0 in case (a) and 
2a+b= 2c+d=0 in case (b). 01 

The associated p-singularities of the exceptional stable quintuples Q of case (c) 
of Theorem 1.3 also have good antibicanonical covers. For some of these associated 
p-singularities, the criterion in Corollary 2.8(ii) above can be used to show this, but 
for others we need a different method. 

COROLLARY 2.9. Let Q = (a, b, c, d, e) be a quintuple with a + b + c + d + e = 0 

and e < 0, and for a monomial m = (i, j, k, I) define ?i(m) := ia + jb + kc + Id. 
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Suppose that there is a small vector n in the closed convex hull of the set 

f := {m E #+ jii(m) = -2e}. 
Then the associated p-singularity Tp = [a, b, c, d]p has a good antibicanonical cover 
for every p > MQ. 

Proof. If wi(m) = -2e, then wTp(m) i_ (m) = 2s (mod p). Thus, f c o2+ 
so for an appropriate positive e < 1, (1 - e)n will be a small vector in Y2,. The 
corollary now follows from Corollary 2.7. 0 

In Table 1.9, for each exceptional stable quintuple Q we listed the coefficients 
for certain linear relations among the entries of Q with coefficients in {0, 1, 2}. For 
10 of the quintuples, we listed three relations, and in each of these cases it is easily 
verified that each entry of Q has coefficient 0 in at least one of those relations; thus, 
all 5 associated p-singularities have good antibicanonical covers by Corollary 2.8(ii). 
For 18 of the remaining 19 quintuples, there is exactly one entry in Q which has 
nonzero coefficient in every relation (and for the quintuple (8, 5, 3, -1, -15) both 
-1 and -15 have nonzero coefficients in every relation). We thus have 20 cases 
remaining to be checked, and in each of these the relevant entry of Q is negative. 
Corollary 2.9 holds for each of these cases, as we verify in Table 2.11. This table 
lists those cases along with a small vector n and a convex linear combination of 
elements of f which equals n. Hence, we get 

PROPOSITION 2. 1 0. All the terminal quotient singularities associated with the 
stable quintuples of Theorem 1.3 have good antibicanonical covers. 0 

TABLE 2.11 

[sla, b, c, d] small vector n convex linear combination 

[8115, 4, -5, -6] (3/2,2,1/2,2) = 1/2 (0,4,0,0) + 1/2 (3,0,1,4) 

[2115, 1, -5, -9] (3/2,2, 1/2,2) = 1/2 (0,4,0,0) + 1/2 (3,0, 1,4) 

[4115,2,-3,-10] (1,2,2,1/2) = 1/2 (0,4,0,0) + 1/2 (2,0,4, 1) 

[1216,4,3,-1] (2,3/2,2,0) = 1/2 (2,0,4,0) + 1/2 (2,3,0,0) 

[1417,5,3, -1] (2,2,3/2, 1/2) = 1/2 (3, 1, 1, 1) + 1/2 (1,3,2, 0) 

[1419, 7, 1, -3] (3/2,2, 1/2,0) = 1/2 (3,0, 1,0) + 1/2 (0,4, 0, 0) 

[14115, 7, -3, -5] (3/2,2,2, 1/2) = 1/2 (0,4,0,0) + 1/2 (3,0,4, 1) 

[118,5,3,-15] (2,1/2,2,3/2) = 1/2 (4,0,0,2) + 1/2 (0,1,4, 1) 

[1518,5,3, -1] (2, 2,3/2, 1/2) = 1/2 (3,0,2,0) + 1/2 (1,4, 1, 1) 

[2110,6, 1, -15] (1/2,2,2, 1) = 1/2 (1,4,0,2) + 1/2 (0,0,4, 0) 

[4112,5,2, -15] (2, 1/2, 2, 3/2) = 1/2 (4, 1,0,3) + 1/2 (0, 0,4, 0) 

[1819,6,4,-1] (2,2,3/2,0) = 1/2 (2,3,0,0) + 1/2 (2,1,3,0) 

[1819,6,5, -2] (2,3/2, 2, 1/2) = 1/2 (1,2,3,0) + 1/2 (3, 1, 1, 1) 

[18112,9, 1, -4] (3/2, 2,0,0) = 1/2 (3, 0,0,0) + 1/2 (0,4, 0, 0) 

[20110,7,4, -1] (2,2,3/2,0) = 1/2 (4,0,0,0) + 1/2 (0,4,3, 0) 

[20110, 8,3, -1] (2,2, 3/2, 1/2) = 1/2 (1,3, 2,0) + 1/2 (3, 1, 1, 1) 

[20110,9,4, -3] (2, 2, 1/2,0) = 1/2 (4,0,0,0) + 1/2 (0,4, 1, 0) 

[20112, 10,1, -3] (3/2,2,2,0) = 1/2 (0,4,0,0) + 1/2 (3,0,4, 0) 

[24112,8,5,-1] (11/6,2,2,0) = 1/2 (1,2,4,0) + 1/3 (2,3,0,0) + 1/6(4,0,0,0) 

[30115,10,6,-1] (2,2,5/3,0) = 1/2 (4,0,0,0) + 1/3(0,6,0,0) + 1/6(0,0, 10,0) 
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There remains the question of whether the sporadic terminal singularities which 
exist for p < 421 have good antibicanonical covers. The answer is nearly always 
yes. 

THEOREM 2. 12. Every terminal quotient singularity of index p < 421 has a 
good antibicanonical cover with the exception of those equivalent under the actions 
of S4 or (Z/pZ)* to one of the six singularities in Table 2.15. 

Combining this with Proposition 2.10 yields the 

COROLLARY 2.13. If Conjecture 1.4 holds, then every four-dimensional termi- 
nal quotient singularity of prime index, except those occurring in Table 2.15, has a 
good antibicanonical cover. 0 

Our approach to Theorem 2.12 is a computational one based on a restatement 
of Corollary 2.7. Fix a terminal quotient singularity T. Let A denote the set of real 
vectors A = (Am) indexed by the elements m = (im, Jm, kin, lm) of Ys for which 

(i) Am > 0 for all m, and 

(ii) iA := ZmE2S Amim < 2, and likewise for the analogously defined sums }A, 
kA, and 1A, 

and let 

MA Z Am and PT = max{Md}. 
,AEA 

mE42s 

LEMMA 2.14. The singularity T has a good antibicanonical cover if and only 
if MT > 1. 

Proof. If 2 lies in the interior of Newton(I - 2KT I), then, by Corollary 2.7, there 
is a vector n E ?2S with all coordinates strictly smaller than two. This n can be 
written as a linear combination A = (Am) in A for which MA = 1 and hence MT > 1- 

Conversely, if PT > 1 and the A which realizes this value corresponds to the vector 
n, then (1/MT)n is a small vector in Y2,s ?l 

This lemma essentially corresponds to dualizing the linear programming prob- 
lem posed by Corollary 2.7. Moreover, the calculation of PT as defined above is a 
standard exercise in linear programming. All that is required as input is an enu- 
meration of the generating set Y2 using the definition given in (2.2). We have 
carried out this calculation for all the terminal quotient singularities T of prime 
index less than 421 on the Macintosh and Ridge computers of the Columbia Univer- 
sity mathematics department. Our linear programs were solvedtt using the Pascal 
subroutines which are described in Section 10.8 and listed on pp. 743-746 of [9]. 
Theorem 2.12 is the result of these computations. 

The six terminal quotient singularities which do not have good antibicanonical 
covers are described in Table 2.15. Since 2 is always in Y2,, these T have MT = 1, 

so the output of our programs is not especially interesting. Instead, we give the 
reader data from which it is straightforward to verify that 2 does not lie in the 
interior of Newton(I - 2KT ). More precisely, we give for each T a complete list of 
the monomials in Ys and the equation of a hyperplane H := HT in R4 containing 

ttA listing of the complete Pascal program we used is available from the authors upon request 
(directed to the third author). 
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2 and such that every other element of Y2, either lies on H or lies on the positive 
side of H. (Those which lie on H are prefixed by an * in the listing of Y2.) 

Note that, in view of Proposition 2.10, any terminal quotient singularity of prime 
index < 1600 which does not have a good antibicanonical cover must be sporadic. 
Hence, the six singularities of Table 2.15 are examples of sporadic four-dimensional 
terminal quotient singularities. From them one can easily construct examples of 
p-terminal quintuples which are not stable: for example, the unstable quintuple 
(-1, 3,14, 23, -39) which is p-terminal for p = 83. 

TABLE 2.15 

p: [sja, b, c, d] hyperplane HT 

(monomials in Y2) 

83: [113, 14, 23, 44] 24i+29j+18k+201=182 

((0,0,0,34) (0,0,3,23) (0,0,6,12) * (0,0,9,1) (0,0,47,0) 

(0,1,2,10) (0,3,1,8) (0,5,0,6) (0,8,2,4) (0,10,1,2) 

(0,12,0,0) *(1,0,1,7) (1,0,18,0) *(1,2,0,5) (1,5,2,3) 

(1,7,1,1) (2,0,0,15) *(2, 0,3,4) *(2,2,2,2) *(2,4,1,0) 

*(3,0,5,1) (3,11,0,2) (4,0,14,0) (4,1,0,7) (4,8,0,1) 

(5,1,2,4) (5,3,1,2) (5,5,0,0) *(6,0,1,1) (7,0,0,9) 

(7,0,10,0) (8,4,0,2) (9,1,0,1) (10,0,6,0) (12,0,0,3) 

(13,0,2,0) (16,1,1,0) (19,2,0,0) (56,0,0,0) 

103: [114,57,59,87] 8i+7j+llk+91=70 

((,0,0,090) (0,0, 1, 10) (0,0,14,0) (0,1,5,9) (0,2,0,7) 
(0,3,4,6) (0,4,8,5) (0,5,3,3) (0,6,7,2) (0,7,2,0) 

(0,12,0,4) (0,22,0,1) (0,94,0,0) (1,0,0,13) *(1,0,4,2) 

(1,1,8,1) (1,2,12,0) (1,5,2,6) (1,7,1,3) (1,9,0,0) 
(2,0,3,5) *(2,2,2,2) (2,3,6,1) (2,4,10,0) (2,7,0,6) 

(3,0,2,8) (3,2,1,5) *(3,4,0,2) (3,5,4,1) (3,6,8,0) 

(4,0,5,0) (5,2,3,0) (6,4,1,0) (12,1,0,0) (52,0,0,0)) 

103: [119,15,22,58] 18i+30j+44k+181=210 

((0,0,0,32) * (0,0, 3,6) (0,0,15,5) (0,0,27,4) (0,0,39,3) 

(0,0,51,2) (0,0,63,1) (0,0,75,0) (0,1,2,15) (0,2,1,24) 

*(0, 7,0,0) *(1,0,2,8) (1,1,1,17) (1,2,0,26) *(1,2,3,0) 

*(2,0, 1,10) (2,0,6,1) (2,0,18,0) (2,1,0,19) *(2,2,2,2) 

*(3,0, 0,12) (3,0,5,3) *(3,2, 1,4) (4,0,4,5) *(4,2,0,6) 

*(5,4, 0,0) (6,0,7,0) *(10,1,0,0) (46,0,0,0) 

107:[1119,22,31,36] 2i+21#2k+31=18 

(*(0, 0,0,6) (0,0,15,2) (0,0,76,0) (0,1,12,1) (0,2,9,0) 

(0,5,8,2) (0,6,5,1) *(0,7,2,o) (0,10,1,2) (0,13,0,4) 

(0,23,1,0) (0,26,0,2) (0,39,0,0) (1,0,4,5) (1,0,19,1) 

*(1,1,1,4) (1,1,16,0) (2,0 
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p: [sla, b, c, d] hyperplane HT 

(monomials in 28 

109: [114,35,89,91] 40i+23j+18k+381=238 

((,0,0,012) *(0, 0,9,2) (0,0,98,0) (0,1,18,0) (0,2,8,7) 

(0,3,7,4) *(0,4,6,1) (0,6,5,6) (0,7,4,3) *(0,8,3,0) 

(0,10,2,5) (0, 11,1,2) (0,13,0, 7) (0,23,2,0) (0,26,0,2) 

(0,38,1,0) (0,53,0,0) (1,0,2,10) *(1,0,11,0) (1,1,1,7) 

*(1,2,0,4) (2,0,4,8) (2,1,3,5) *(2,2,2,2) (3,0,6,6) 

(3,1,5,3) *(3,2,4,0) (4,0,8,4) (4,1,7,1) *(5,0,0,1) 

(19,1,0,0) (55,0,0,0) 
109: [1114,19,30,47] 14i+1 9j+30k+4 71=220 

((0,0,0,7) (0,0,26,2) (0,0,53,1) (0,0,80,0) *(0,1,2,3) 

*(0,10,1,0) (0,46,0,0) (1,0,11,2) (1,0,38,1) (1,0,65,0) 

(2,0,23,1) (2,0,50,0) (2,1,0,6) *(2,2,2,2) (3,0,8,1) 

(3,0,35,0) (4,0,20,0) (4,2,0,5) *(4,3,2,1) *(5,0,5,0) 

(6,3,0,4) *(6,4,2,0) (7,0,3,3) (8,4,0,3) *(9,0,0,2) 

*(11,1,0,1) *(13,2,0,0) (18,0,1,1) (20,1,1,0) (27,0,2,0) 

(78,0,0,0) 

*Monomials lying on HT are marked with an *. Those above HT are unmarked. 

Added in Proof. As of June 1, 1988 the conjecture has been numerically verified 
for all primes < 2600. 
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